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In this paper, the use of thermoelastic measurements to improve a "nite element
model is investigated. The originality of the procedure lies in the use of this stress
sum "eld measurement and in the new solution method of the modelling error
location stage. Measurement inaccuracies and expansion errors are taken into
account through an inequality constraint. Finally, the correction stage is done
owing to a variable metric Gauss}Newton method. This updating process has been
applied to modal thermoelastic measurements carried out on a thin plate bending
with di!erent kinds of defects ( 1999 Academic Press
1. INTRODUCTION

During the last 20 years, "nite element model updating has focused much research,
especially in the aeronautical and automotive industries. Many techniques have
been proposed, but they were sometimes limited by the available experimental data.
The development of high-performance acquisition systems, allowing an accurate
and wide investigation of structure behaviour, revives the interest in this subject. In
this paper, the thermoelastic measurement technique that provides the
experimental dilatation "eld measurement for structures under harmonic loading
[1, 2] will be considered. Despite its high sensitivity to local defects and its
achievement of a stress "eld measurement, this technique is not yet widespread.
This is mainly due to di$culties in the interpretation of such data.

Stress experimental values are rarely used for "nite element model improvement,
because of the di$culty to introduce stress data in standard updating schemes.
Standard "nite element models are built only with an approximation of the
displacement "eld. The stresses are a posteriori computed by a derivation and
a smoothing of the displacement "eld [3]. To bypass this di$culty, a mixed "nite
element approach, based on simultaneous approximation of displacement and
stress "elds [3, 4] has been chosen. This non-standard modelling allows easy
handling of the thermoelastic measurement as well as all kinds of stress value in the
iterative updating process.

Updating schemes can be classi"ed into two categories [5]: direct correction
methods and iterative correction methods. In the "rst one, models are only
mass and sti!ness matrices, which are adjusted in one step by a mathematical
0022-460X/99/470397#24 $30.00/0 ( 1999 Academic Press
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approach [6, 7]. Models corrected in this manner have lost their physical meaning
as well as their predictivity based on the updated frequency domain. In iterative
methods, models are de"ned by a set of physical parameters on the "nite element
mesh. The updating is then achieved by an iterative two-step process, composed of
an ill-modelled areas location and a correction of the corresponding parameters.
These methods are heavier to implement, but preserve the physical meaning of the
model. The most crucial step is the parameter choice which will determine the good
or bad conditioning of the correction process. To help this choice some modelling
error indicators have been developed, usually based on the equilibrium equation
residual term [8] or the constitutive law error [9].

However, these procedures are quite sensitive to measurement errors or
inaccuracies due to the usual resolution in a modal subspace [10]. A new approach
to the error location problem is suggested in which these errors are managed by an
inequality constraint on the measured data. The problem is solved by an interactive
linearization of the distance between analytical and experimental data. In order to
make the parameter selection easier, a correlation of the several modal error
indicators is introduced. Finally, the correction stage is achieved owing to
a variable metric Gauss}Newton method with a polynomial line search [11],
applied to a cost function involving thermoelastic data and eigenfrequencies.
Modal parameter sensitivities are computed by Fox's modal superposition method
[12] adapted to the mixed "nite element model.

The previously described approach has been applied to measurements carried
out on thin plate bending with di!erent kinds of defects. After a short description of
the thermoelastic measurement, the error location results are discussed. The
in#uence of the a priori error estimation is investigated, and the location of its range
is reached. Lastly, the model is corrected towards mass parameters and boundary
sti!nesses.

2. FINITE ELEMENT MODELLING

The mixed model used in this paper is built with a Hellinger}Reissner principle
involving simultaneously the displacement and stress "elds. It consists in "nding
the real "elds (u

i
, p

ij
) which make the following function steady:
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This principle describes explicitly the equilibrium equation, the constitutive law
and all the boundary conditions which can be restored by di!erentiating the above
expression. It must be underlined that, in the standard displacement formulation,
the only explicit relations are the equilibrium equation and the kinematic boundary
conditions. All other mechanical relations are implicitly used but are not enforced
by the variational principle and thus will not be represented by a "nite element
relation.
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Once the structure has been discretized with "nite elements, the mechanical "elds
are approximated on each element (e) owing to their values (degrees of freedom) at
the nodes n by

u(e)(x, y, z)"+
n

N(e)
un

(x, y, z)uN (e)
n

, p(e)(x, y, z)"+
n

N(e)pn (x, y, z)pN (e)
n

.

In these relationships, N
u
, Np are appropriate shape functions and uN , pN the

corresponding displacement and stress degrees of freedom vectors, that have to be
determined. The substitution of approximated "elds in the Hellinger}Reissner
principle and its computation for each "nite element provide a quadratic matrix
function. Finally, the steady state conditions of this function versus displacement
and stress degrees of freedom provide the following equations which respectively
correspond to the equilibrium equation and the constitutive law:
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All of the elementary matrices needed to build this system are given in Appendix A.
This set of equations is rarely solved in this form, especially for the eigenvectors
computation. The constitutive law can be used to express stresses in terms of
displacements:

p6 "HDu6 "!K~1
2

K5
1
u6 (3)

and then, after substituting relation (3) into relation (2), the standard eigenvalue
equation is obtained:

(K!u2M)u6 "0 with K"!K
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K~1

2
K5

1
. (4)

These relationships only involve diagonal or very sparse matrices, which make the
computation quite easy. Relation (4) allows one to compute eigenmodes (u

k
, /

k
)

and by using equation (3) the corresponding stress vectors R
k
.

3. THERMOELASTIC EFFECT

The so-called thermoelastic e!ect is the adiabatic temperature change due to the
material dilatation. It was investigated by Lord Kelvin over a hundred years ago,
but the infrared camera technology has allowed one to measure it for only 20 years.
The thermoelasticity in comparison with the elasticity, requires an additional
variable, the temperature, which introduces additional e!ects. Thermoelastic
equations consist of the motion equation (5), whose expression is already
unchanged, and the heat conduction equation (6):
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with a linear elastic and isotropic constitutive law
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The r and kh
,ii

terms denote the external heat supply and the heat conductivity.
They can be neglected by assuming that an elementary material particle has
a quasi-adiabatic behaviour when frequency is beyond a few Hertz [2].
Furthermore, as one is dealing with small changes around ambient temperature,
the temperature term in the constitutive law (7) can also be neglected. The heat
equation may be simpli"ed as follows:
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The expression of the temperature change in terms of the sum of the principal
stresses or the sum of the principal strains is given by
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This measurement has been investigated in detail in references [1, 2]. More details
about the measurement system, discrimination capacity and accuracy will be given
in the experimental part of this paper. Before being used in the updating process,
this measure of a physical phenomenon must be transformed into "nite element
data.

The thermoelastic "eld Dh is given on a rectangular grid of discrete measurement
points p

i
on the structure top surface (Figure 1). So, an e$cient use of full-"eld

experimental data requires a preliminary correlation between the tested structure
and the modelled geometry. Once the measured "eld has been located on the mesh,
the measurement can be projected on to the model. This is achieved by minimizing
the distance between the experimental values and the corresponding "nite element
approximated "eld:
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The mesh re"nement must be suited to the measurement point density to obtain
a well-conditioned problem. Now the "nite element vectors trN e

m
or trN p

m
are

considered as being the experimental data and can be handled with "nite element
governing equations. This projection smooths in part measurement inaccuracies.

4. MODELLING ERROR LOCATION

The measurement provides only limited experimental information, whereas the
structure is modelled by a number of parameters (elementary mass and sti!ness,
geometry parameters, boundary sti!nesses, etc.). The parameter choice is a crucial



Figure 1. Thermoelastic measurement Dh(K).
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step which will determine the good or bad conditioning of the optimization
problem. To help the user in this choice, some modelling error location techniques
exist, often based on residual forces in the equilibrium equation or on the
constitutive law error.

4.1. STANDARD ERROR LOCATION TECHNIQUES

The "nite element model is characterized by the equilibrium relationship, the
so-called eigenvalue equation:

(K!u2
k
M)/

k
"0. (12)

If the measurement provides the experimental circular eigenfrequency u
km

and the
full deformation shape /

km
, one can substitute these values into the previous

relationship:

(K!u2
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k
. (13)

The equilibrium is not satis"ed yet and a residual term R
k
appears, representing the

loading that has to be applied to the modelled structure to obtain the experimental
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deformation shape. This vector can be straight linked to the mass and sti!ness
correction matrices by

R
k
"(!DK!u2

km
DM)/

km
. (14)

Thus, this residual term may be used to locate the modelling inaccuracies.
However, mode shapes are usually only measured at some discrete points and in
particular directions of the experimental structure. Before the error location step,
a reduction of the model for the measured degrees of freedom or an expansion of
the experimental results for the whole model must be carried out [5]. Reduction
techniques modify the model connectivity and lead to a propagation of the error in
the whole matrices [8]. An expansion is, in the present case, far more suitable [5].
For a displacement u

m
measured at some discrete points, the location problem is

generally achieved by minimizing a cost function involving the residual forces and
measured values:

min
u

E(K!u2
m
M)u6 E2#p DDDP

m
u6 !u6

m
DDD2. (15)

Norms E2E2 and DDD2DDD2 usually have the physical meaning of the strain energy
and so both terms have a similar weight. The weighting parameter p allows the
measured data to be more or less enforced, depending on their reliability. The
solution of this problem provides the expanded displacement vector u6 and, by
substituting it in the equilibrium equation (13), the residual vector for all degrees of
freedom. Then an error indicator can be computed by estimating the residual forces
for each "nite element or substructure (e):
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This method is often considered to be very sensitive to measurement errors and
conditioning problems [8].

Another widely used technique for detecting modelling inaccuracies is the
constitutive law error method, developed by Ladeveze [9]. Its strong physical
meaning gives it a good robustness to measurement error. The constitutive law
error is de"ned as follows:

E2(u, p)"PX

Er!HDuE2dX"PX

(r!HDu) : DudX, (17)

u3V(X )"Mu regular, u"0 on C
6
N,

r3S (u, X)"Mr"0 on Cp , divr"ouK N.

This estimator provides the distance between the statistically admissible stress
r and the one computed with the constitutive law from the kinematical admissible
displacement "eld u. For the Hellinger}Reissner mixed model (3), its expression is
given by
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with
K

1
p6 !u2Mu6 "0 (19)

The statistical admissibility of the stress "eld introduces a relationship (19) between
stress and displacement vectors: the equilibrium equation. Usually, a displacement
"eld v is assigned to the stress "eld r using the constitutive law.

r"HDvNr6 "!K~1
2
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1
v6 (20)

Thus, the expression of constitutive law error (18) becomes

E2 (uN , vN )"Eu6 !v6 E2"(u6 !v6 )5K(u6 !v6 ) (21)

As in the previous approach, the location problem can be expressed as
a minimization problem involving the constitutive law error and the experimental
data:
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After the solution of this problem, the location is done using an element by element
location of the constitutive law error:
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In the literature [8], both approaches are often contrasted, according to criteria
such as robustness and accuracy. It can easily be demonstrated that if the norm
E2E2 is built with the sti!ness matrix, both problems are similar. For a given
displacement vector u6 , the equilibrium equation residual vector and the constitutive
law error are de"ned as follows:

R"(K!u2
m
M )u6 ,

E2 (u6 , v6 )"(u6 !v6 ) 5K (u6 !v6 ),

with

Kv6 "u2
m
Mu6

from which one can deduce that the constitutive law error is equal to the energy of
the residual forces:

R"K(u6 !v6 )NR5K~1R"E2 (u6 , v6 ). (24)

4.2. ERROR LOCATION USING THERMOELASTIC DATA

For a standard "nite element model dealing with stress values is tricky, because
there exists no "nite element relationship linking these data to the displacement
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vector. But using the constitutive law operator built with a Hellinger}Reissner
model (3), experimental stress values can be easily introduced into this location
process. For thermoelastic measurement the constitutive law error problem can be
expressed as follows:

min
u6 ,v6

Eu6 !v6 E2#p DDDP
m
¹r HDv6 !trN r

m
DDD2 with Kv6 !u2

m
Mu6 "0. (25)

Experimental data are as usual introduced by a weighting factor that allows
them to be more or less applicable. The solution is directly determined by this
parameter, which has no physical meaning and whose choice, according to the
measurement reliability, is not straightforward. The most natural way to manage
experimental data is to constrain them with the estimated measurement error e

m
.

The location problem, then becomes, a minimization problem with an inequality
constraint.

min
u6 ,v6

(u6 !v6 ) 5K(u6 !v6 ) with Kv6 !u2
m
Mu6 "0, (26)

The norm here is a Euclidian one. Measurement inaccuracies mainly depend on the
measurement technique and the care taken in measuring. They can reach 5}20%.
For industrial models, the solution of problems (25) or (26) with respect to all
degrees of freedom can sometimes be very cumbersome. So location problems are
usually solved in the subspace of the q "rst analytical modes.
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The unknown parameters are now the modal coe$cients a
i
and b

i
. However, this

resolution into a subspace is another important cause of error. Experimental results
have shown (Table 1) that this error can reach 10% and must therefore be taken
into account in the resolution process. The enforced error e

m
must be greater than

the projection error; otherwise the problem has no solution. This error can be
estimated by an evaluation of the distance between the experimental "eld and its
least mean-square projection on the modal subspace:

e
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TABLE 1

Modelling and projection errors

Mode 1 2 3 4

Modelling error e
0

(%) 18)2 35)2 15)2 30)3
Projection error e

p
(%) 11)8 13)7 8)9 11)9
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with
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T denotes the stress sum matrix of the q "rst modes. By substituting equation (27)
into equation (26) and using the orthogonal properties of the modes, the location
problem can be expressed only in terms of coe$cients a

i
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This kind of optimization is much more di$cult to solve than a single function
minimization. All standard methods are described in reference [11]: the Lagrange
multiplier approach, the gradient projection and reduced gradient methods, as well
as the feasible direction method. These techniques with n parameters are quite
cumbersome. However, particularities of the location problem allows one to
simplify it and to develop an e$cient solution method.

It must be underlined that this new expression of the location problem involves
only the stress eigenvectors and can be adapted to a classical displacement "nite
element model.

4.3. PARTICULARITIES OF THE CONSTRAINED LOCATION PROBLEM

Gafka and Zimmerman [13] have shown that the constrained error location
problem (29) has some interesting properties:

f The cost function is convex.
f The experimental "eld is close to the analytical eigenmode because only the

matched modes are used in the location process.
f The solution is reached on the boundary of the inequality constraint [11]. Hence,

the inequality constraint can be replaced by an equality constraint.

This last assumption can easily be demonstrated. The constraint is either active
or inactive. Consider these two cases.

Case 1: ¹he constraint is inactive
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m
.

The solution is in the admissible domain. The constraint has no in#uence on the
solution computation and can be disregarded. The solution of the problem is then
the analytical mode. This solution is only acceptable if the estimated error e

m
is

greater than the distance e
0

between the analytical and experimental data. In this
case the updating process is not helpful.

Case 2: ¹he constraint is active
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The solution is on the boundary of the admissible domain. This is the only
possibility when the "rst one is ruled out. The constraint compels the solution to
tend towards experimental values.

Using previous particularities, the error location problem can be written:

min
a

F(a) with G (a, e
m
)"0, (30)
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4.3. A NEW SOLUTION PROCESS

The distance between analytical and experimental data e is now considered as
a parameter of the optimization process. To each particular value e

m
of e, only one

solution a corresponds. So instead of solving problem (30), the distance e is forced
to tend towards e

m
. The constrained minimization (30) can be transformed into

a single minimization by introducing a Lagrange's multiplier j:

min
a,j

F(a)#jG (a, e). (31)

The steady state condition towards j sets the constraint on the measured data:

L
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The steady state condition towards modal coe$cients a provides the relationship

L
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(F#jG)"0N gradF(a)"!j grad
e/cst
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From this relationship, one can deduce that j has to be positive; otherwise the
constraint will not be active. Furthermore, this relationship allows one to express
the parameters a in terms of j:
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m
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By substituting this relation into equation (32), the minimization problem (31) can
be transformed into solving equation (35) versus j:

G(a (j), e
m
)"0. (35)

This equation can also be written as
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This equation will "nally be solved in terms of an iterative linearization of the
distance e versus Lagrange's multiplier. To improve the regularity of e(j) and using
the fact that j was to be positive, the multiplier j is replaced by 10k, with k in
]!R,#R[. The expression of the modal coe$cients becomes

a(k)"10k(Q#10k(P
m
T )5(P
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T ))~1(P

m
T )5 trN r

m
. (37)

For each experimental mode k, one has to solve the iterative problem de"ned by
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The initial point k
0

is computed with the analytical mode, normalized towards the
experimental data:
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The solution of equation (38) requires the sensitivity computation of e versus k.
De"ne
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The sensitivity expression is then
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Even if the previous expression seems to be complex, it involves only small
matrices of order n (length of the modal basis). The solution of this new location
problem is very fast and the convergence is achieved in a few steps (see Figure 2).
Error indicators are then computed using expressions (16) or (23). The key point of
this method is the choice of the measurement error e

m
, according to the projection

error e
p

and the initial distance between analytical and experimental data e
0
. The

in#uence of this choice on the error location will be investigated later.

5. OPTIMIZATION PROCESS

The ability to understand all possible error causes requires experience in
updating problems, as well as good knowledge of the modelling hypothesis and



Figure 2. Solution for the "rst mode.
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the mechanical behaviour of the experimental structure. Error indicators do not
give any information about the kind of modelling error. However, depending on the
structure area highlighted by error indicators, it is often possible to guess
parameters that a!ect the modelling most.

The mass and sti!ness of the "nite element or group of elements, as well as
boundary sti!nesses have been taken as optimization parameters. All geometrical
parameters can be managed in this way:
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i
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The choice of the cost function has been widely discussed in the literature
[5, 11, 14]. This function can involve the error between analytical and experimental
eigenfrequencies or mode shapes, modal analysis criterion coe$cients, residual
forces, constitutive law error or a linear combination of this data. Thermoelastic
mode shapes and eigenfrequencies have been introduced by means of the distance
between analytical and experimental data. The advantage of this choice is to
improve the model using untreated data, but supplying a highly non-linear cost
function.

F(pM
i

, pK
i
)"

m
+
k/1

EP
m
¹
r
R

k
!trN r

km
E

EtrN r
km

E
#

Eu2
k
!u2

km
E

u2
km

. (45)

The minimization of this cost function is achieved by means of a metric variable
quasi-Newton process [11] with a polynomial line search. The gradient is
computed using a modal parameter sensitivity method. As the function is non-
linear and the parameters may have di!erent rank orders, the gradient is corrected
through iterative estimation of the Hessian with the Davidon Fletcher Powell
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method. Then the minima in this direction are searched through polynomial
approximation of the correction step length. When the minima are reached,
another search direction is computed. If there are no local minima the algorithm
must converge [15]. To avoid convergence problems due to local minima some
regularization methods have been developed [14]. In the present case, it is assumed
that the amount of experimental thermoelastic data and the summation on many
modes provides a regular enough function. However, to avoid a divergence of the
"nite element solution, the parameter changes have been limited to a priori
estimated range. This optimization method, based on an iterative linearization
of the cost function, calls for modal parameter derivatives versus structural
parameters:
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For a standard model, the derivatives of the modal stresses can be computed only
by "nite di!erence methods, which require a lot of model evaluations. The use of
a mixed model allows quick computation of these derivatives. The modal
parameter sensitivities versus structural parameters are obtained by di!erentiating
the governing mixed equations (47) and (48) versus these parameters:
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For single eigenvalues, previous relationships are su$cient to determine modal
sensitivities. The exact solution by means of Nelson's method has a too high
computational cost to be applied. So the Fox's modal superposition method [12],
which consists of representing the displacement and stress sensitivities by
contributions of the q "rst eigenvectors has been adapted:

L/
k

Lp
"Ua,

LR
k

Lp
"Rb. (52)

The coe$cients a
i
and b

i
(i in [1, n]) are determined by premultiplying equations

(49)}(51) with /
i
and R

i
, and using the orthogonality properties. The "nal outcome
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is that
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, (53)

a
i
"G

/5
k
f
1
#R 5

k
f
2

u2
i
!u2

k

, iOk,

!1/2/5
k

LM
Lp

/
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k
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This method requires very little computation, but has frequently been shown to be
inaccurate due to the use of an incomplete set of eigenvectors in the expansion [12].
Other techniques, such as the Zhang and Zerva iterative method or preconditioned
conjugate projected gradient iterative technique [12], allow one to improve
derivative calculation but introduce high computation. Nevertheless, the accuracy
of Fox's method can be improved by increasing the number of eigenvectors.
Moreover, as the correction is done by using an iterative method, one assumes that
high accuracy is not necessary.

6. EXPERIMENTAL RESULTS

6.1. THERMOELASTIC MEASUREMENT OF THIN PLATE BENDING

The measurement of the dilatation temperature change is made without contact,
at room temperature, by means of a thermographic camera (SPATE 4000
Ometron) "tted with a mirror scanning system. It allows one to obtain a wide
experimental "eld on the tested structure area at "xed frequencies (here the
eigenmode thermoelastic "elds). The thermoelastic information, which is about
0)01}0)5 K, is extracted from the other room temperature changes through
a frequential analytical "ltering. The measurement is fully controlled by a computer
(see Figure 3).

All physical phenomena involved in this measurement technique, such as the
infrared emissivity, the gaseous media absorption, the radiation detection, as well
as the thermoelastic signal calibration, were investigated in detail in reference [2].
The accuracy of temperature measurement reaches almost 0)001 K, which
corresponds to a stress level of about 1)0 MPa for steel and 0)4 MPa for aluminium.
The main limitation of this technique is the stress level one is able to generate,
especially for high frequencies.

Thermoelastic modal measurements were carried out on a thin aluminium plate,
with free-clamped boundary conditions (Figure 4). Di!erent kinds of defects were



Figure 3. Experimental set-up.

Figure 4. Experimental structure.
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tested, successively: a 38 g mass located at di!erent positions, a material damage
(a set of little borings) reducing the sti!ness by about 30%, and releasing of clamped
boundary conditions. For the latter defect some screws were removed. The
excitation was realized with a shaker controlled by a frequency analyzer. A modal
analysis was carried out in order to detect the "rst modes of the plate with a high
accuracy. The thermoelastic measurement does not allow modal extraction.
However, as the modes are well separated and the damping is small, one can
consider that the measured shape can be compared with its mode shape.

Figure 1 shows the thermoelastic modal measurements for the "rst four modes.
The experimental "elds have been obtained on a mesh involving 36 * 74 points and
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are quite smooth. The thermoelastic "eld was calibrated by a strain gauge stuck on
the rear side of the plate.

6.2. KIRCHOFF'S THIN PLATE MODELLING

The plate can be modelled with a di!erent kind of approach [3, 4]. A choice was
made to model it with a two-"eld Hellinger}Reissner formulation and Kircho! 's
thin plate hypothesis. Major assumptions of this theory are that: plane sections
remain plane during deformation, the bending and membrane behaviours can be
dealt separately, the direct stress in the normal direction p

z
is small enough to be

neglected, together with the shear deformation. The behaviour of the plate can then
be described by the normal displacement u of the middle plane and the bending
moments (pJ

x
, pJ

y
,pJ

xy
):

pN "P
e@2

~e@2

zpdz"A
pN
x

pN
y

pN
xy
B . (56)

The "nite element mesh (Figure 5) is composed of 231 rectangular elements with
four nodes per element. Convergence problems of mixed formulations are discussed
in reference [3]. They lead to some requirements linking the respective number of
displacement and stress degrees of freedom. To avoid this di$culty the same order
approximation that requires four degrees of freedom per element was taken for
all displacements and stress components. So, four degrees of freedom are de"ned
for each node: one displacement uN and three bending moments pN

x
pN
y

pN
xy

. This
modelling leads to a set of equations which have the same expression as (2).

The clamped edge is generally obtained by setting corresponding generalized
degrees of freedom to zero. Nevertheless, a real clamping never has in"nite rigidity.
Figure 5. Finite element model.
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So it was modelled by a set of linear springs k
0
, that will be updated in the

correction step. These springs are introduced in the mixed formulation by means of
their potential energy k

0
u2 and will "nally appear as k

0
diagonal terms associated

with the corresponding displacement degrees of freedom.
For bending deformation the stress distribution is linear; so bending moments

can be directly related to the top area stresses by

p
(z/e@2)

"$e/2pJ (57)

N tr pJ
m
"$2/e tr p

m
. (58)

The thermoelastic values were then projected on to the mesh using the "nite
element shape functions (10), to obtain corresponding degrees of freedom tr eN

m
.

6.3. ERROR LOCATION

The previous model has been used to compute 30 displacement and stress sum
mode shapes (u

i
, /

i
, T

i
), useful for the location process. Before beginning the

updating, the distance between experimental and analytical values as well as the
error introduced by the modal subspace (28) were estimated. Table 1 shows these
data for the "rst mass defect.

The expansion error is about 10% and is thus signi"cant, in comparison with the
modelling error. The convergence rate of the modal projection is very low and
a basis of 50 modes only reduces this error by 1 or 2%. The measurement error is
estimated a priori to be around 5%, to which is added the expansion error e

p
to

obtain the constraint e
m
. The convergence of the constrained location method is

very fast and is reached in a few steps, as shown in Figure 2. On this curve, the
distance e in terms of k and successive iterations of the resolution were plotted.
When k increases, it enforces the experimental term of equation (31) and e tends
toward e

p
.

Figure 6 shows modal error location for the "rst mass defect. The location
is not very good. Not only has the mass been located, but also other parts of the
structure.

Due to expansion or measurement errors the ill-modelled area is never located
by a single peak. The modelling error may not a!ect all modes or can be hidden by
measurement errors or be "ltered by the modal basis. Furthermore, the e!ect of an
erroneous parameter on the dynamic response varies with the frequency domain
and the parameter type.

The ill-modelled parameter detection consists in "nding areas appearing on
many indicators. This is quite easy in the case of a numerical simulation especially
when the modelling error is known, but proves much more di$cult in a real case.
Usually, the normalized indicators are simply added (59) and provide a global
indicator for all the modes:

s(e)
1
"

m
+
k/1

g(e)
k

Eg
k
E

. (59)



Figure 6. Error location for the mass defect.
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In reference [16], the author suggests weighting the frequency location indicators
by the dissipated energy. Another approach has been chosen which uses a
correlation between all modal indicators (60), which highlights errors occurring on
many indicators:

s(e)
2
"

m
+

k,h/1 kOh

g(e)
k

g(e)
h

Eg
k
EEg

h
E

. (60)

Figure 7 shows the indicator s
2

carried out for all considered defects, with the
"rst four thermoelastic measurements. All kinds of defects are located with good
accuracy. However, it is noteworthy that the excitation area is detected too. This
technique is very interesting when experimental information is available for a lot of
frequency points and when the measurement error is signi"cant. The discrimination
capacity of these correlated indicators is greater than the standard ones.

The solution of the location process is directly determined by the enforced error
e
m
. This parameter seems to be very important, but it cannot be estimated with

high accuracy. It is usually given a priori, according to the measurement quality.
Hence, the sensitivity of the location versus this parameter has been investigated. In
Figure 8, is plotted the constitutive law error versus the multiplier k and versus e

m
,

and the location of its approximate domain is achieved.
The location is achieved for a quite large domain of k and e

m
. However, these

domains are not the same for each mode. When k becomes too great, the energy
E2(u6 , v6 ) increases quickly and the location fails. This corresponds to a decrease in
the distance between experimental and analytical data, e, which tends towards e

p
.



Figure 7. Error location using s
2
.

Figure 8. Constitutive law error ("rst mode).
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The parameter k enforces the measurement inaccuracies too. Since measurement
errors have a greater deformation energy than modelling errors, the constitutive
law error increases faster. Thus, the optimal measurement expansion is obtained for
the upper bound of k's location domain.

6.4. MODEL OPTIMIZATION

Now consider the results of the model correction for the "rst mass defect. This
defect is represented by mass m at the position located by indicator s

2
(Figure 7).

The clamped edge is split into three parts with a sti!ness parameter a
i
for each one.
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Boundary sti!nesses were introduced using power parameters to improve their
linearity,

k@
0i
"10aik

0i
. (61)

The optimization requires 12 sensitivity computations and about 40 evaluations
of the "nite element model. It leads to a cost function monotonic decrease of 56%.
But as shown in Figures 9(b) and 9(c), di!erent terms of the cost function (45) have
Figure 9. Correction of the mass defect: (a) cost function; (b) error on thermoelastic "elds; (c) error on
eigenfrequencies; (d) mass parameter m (10~3 kg); (e) boundary sti!nesses k

0i
(N/m).



TABLE 2

Correction of modal parameters

Mode 1 2 3 4

Eigenfrequency (%) 98 87 71 98
Thermoelastic data (%) 52 53 14 34
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a less regular trend. The observable chaotic and irregular behaviours are due to the
strong cost function non-linearities. The correction ratio of modal eigenfrequencies
and thermoelastic data are given in Table 2.

The mass defect is updated by about 85% and the boundary sti!nesses are
reduced from the 106 Nm~1 initial value to about 105 Nm~1. The residual error
on thermoelastic modal "elds is due to either thermoelastic measurement
inaccuracies or physical phenomena which have not been modelled. Nevertheless,
the model improvement is quite signi"cant and shows the usefulness of
thermoelastic data in the correction step.

7. CONCLUSION

The aim of this paper was not to promote thermoelasticity as the best
experimental information for "nite element updating, but to show that it can
be successfully used to achieve this goal. Measurements are usually the last
stage of the design process and are rarely planned for updating purposes.
So the user cannot choose the experimental data, which could be displacement
as well as stress values. Moreover, "nite element models are usually used
to predict the stress level; it can also be interesting to update them with respect to
this kind of data.

So far the lack of experimental data has put a curb on updating methods, but
modern experimental techniques enable now a wide and accurate measure of the
real behaviour of mechanical structures. The new approach of the modelling error
location has a better accuracy and robustness to measurement errors than the
standard one. The single parameter of the location problem is now the a priori
measurement error which is easier to estimate than the former weighting factor and
has a physical meaning. Moreover, the introduction of a correlation between modal
error indicators already improves the detection of ill-modelled parameters. This
should be stressed.

The use of non-standard mixed models could be a drawback because this kind
of modelling is not available in industrial "nite element softwares. However, the
solution by means of a modal superposition technique involves only stress
eigenvectors (see equation (29)) which can be estimated with most of the classical
softwares. Nevertheless, the so obtained stress vectors are generally less accurate
than those computed using a mixed model and do not necessarily satisfy static
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boundary conditions. Finally, it must be underlined that the present developments
are not limited to the use of thermoelastic data. The new solution technique
proposed can be applied to any standard expansion and location methods based on
the constitutive law error or the residual forces.
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APPENDIX A: HELLINGER}REISSNER MIXED MODEL

The approximated mechanical "elds are given for each element (e) versus degrees
of freedom at every node n by

u(e)(x, y, z)"+
n

N(e)
un

(x, y, z)uN (e)
n
"N (e)

u
u6 (e),

p(e)(x, y, z)"+
n

N(e)pn (x, y, z)pN (e)
n
"N (e)p p6 (e).
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For a two-"eld (u!r) formulation, Zienkiewicz and Taylor [3] express the general
expression of elementary mass and sti!ness matrices:

M(e)"PX
e

oN (e)
u

N (e)5
u

dx dy,

K (e)
1
"PX

e

N (e)p DN (e)5
u

dxdy,

K (e)
2
"!PX

e

N (e)p H~1N (e)5p dxdy,

F (e)"PC
e

t0N (e)5
u

ds.

For the thin plate model used in the experimental part, both displacement and
stress approximations are based on the same Lagrange's shape function order 1
(N(e)

u
"N(e)p "N ). The plate has been modelled by means of four-node rectangular

elements with four-degrees-of-freedom per node: one normal displacement uN
n
and

three bending moments pN
xn

, pN
yn

, pN
xyn

. The particular expression of the elementary
mass and sti!ness matrices are then given by
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and e the thickness of the plate.
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APPENDIX B: NOMENCLATURE

ce , cp speci"c heat coe$cients
D spatial di!erentiation operator
E Young's modulus
H Hooke's elasticity matrix
k heat conduction
K"j#2

3
k bulk modulus

K, M sti!ness and mass matrices
r external heat supply
trr

m
thermoelastic measurement

trr, tr e sum of the principal stresses, sum of the principal strains
¹ absolute temperature
¹
r

sum of the principal components
u
i
, e

ij
, p

ij
displacement, strain and stress "elds

=(e
ij
) strain energy

=
c
(p

ij
) complementary energy

Greek characters
a dilatation coe$cient
h temperature change
j, k Lame's coe$cients
l The Poisson ratio
P

m
measurement location matrix

U, R matrices of the q "rst modal deformation shapes and stress vector
o mass density
(u

k
, /

k
) kth analytical mode

(u
km

, u
km

) kth experimental mode
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